A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

نویسندگان

  • E. Babolian Department of mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • M. Mohamadi Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • S. Yousefi Department of Mathematics, Shahid Beheshti University, G. C. Tehran, Iran.
چکیده مقاله:

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the system of Volterra integral equations of the first kind

This paper presents a comparison between variational iteration method (VIM) and modfied variational iteration method (MVIM) for approximate solution a system of Volterra integral equation of the first kind. We convert a system of Volterra integral equations to a system of Volterra integro-di®erential equations that use VIM and MVIM to approximate solution of this system and hence obtain an appr...

متن کامل

APPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.  

متن کامل

Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind

In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...

متن کامل

Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Evaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method

In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 1

صفحات  19- 27

تاریخ انتشار 2018-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023